zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Amitriptyline inhibits Plasmodium development in infected red blood cells by modulating sphingolipid metabolism and glucose uptake (2025)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Hose, Matthias
    Ninnemann, Anne
    Abberger, Hanna
    Schumacher, Fabian
    Naser, Eyad
    Purkart, Leopold
    Korbmacher, Francois
    Martins Nascentes Melo, Luiza
    Beckmann, Nadine
    Blietschau, Vivien
    Falkenstein, Julia
    Kleuser, Burkhard
    Tasdogan, Alpaslan
    Gulbins, Erich
    Carpinteiro, Alexander
    Klopfleisch, Robert (WE 12)
    Buer, Jan
    Westendorf, Astrid M.
    Matuschewski, Kai
    Hansen, Wiebke
    Quelle
    Biomedicine & pharmacotherapy
    Bandzählung: 189
    Seiten: 118331
    ISSN: 0753-3322
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.sciencedirect.com/science/article/pii/S0753332225005256?via%3Dihub
    DOI: 10.1016/j.biopha.2025.118331
    Pubmed: 40633203
    Kontakt
    Institut für Tierpathologie

    Robert-von-Ostertag-Str. 15
    14163 Berlin
    +49 30 838 62450
    pathologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Malaria remains a global health challenge, necessitating novel therapeutic approaches. Here, we explore the role of the sphingolipid metabolism in Plasmodium infection. We focus on the enzyme acid sphingomyelinase (Asm), which hydrolyzes sphingomyelin to ceramide, a structural but also bioactive membrane molecule. We demonstrate induction of Asm activity in infected mice, leading to elevated ceramide levels in infected red blood cells. Pharmacological inhibition of Asm with the functional inhibitor amitriptyline in Plasmodium yoelii (Py)- and Plasmodium berghei ANKA (PbA)-infected mice significantly reduces parasitemia and mitigates disease-associated pathology. Amitriptyline treatment also reduces T cell activation, preserving blood-brain barrier integrity upon PbA infection. Remarkably, we observe inhibition of Plasmodium falciparum growth in vitro upon exposure to amitriptyline. Mechanistically, we elucidate that amitriptyline impedes intra-erythrocytic parasite development, due to a reduced glucose uptake and thereby interfering with the spreading of blood-stage Plasmodium parasites. Our findings highlight the therapeutic promise of targeting sphingolipid metabolism to combat Plasmodium infections.