jump to content

Fachbereich Veterinärmedizin


Service-Navigation

    Publication Database

    A non-transmissible live attenuated SARS-CoV-2 vaccine (2023)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Adler, Julia M. (WE 5)
    Vidal, Ricardo Martin (WE 5)
    Voß, Anne (WE 12)
    Kunder, Sandra (WE 12)
    Nascimento, Mariana (WE 5)
    Abdelgawad, Azza (WE 5)
    Langner, Christine (WE 5)
    Vladimirova, Daria (WE 5)
    Osterrieder, Nikolaus (WE 5)
    Gruber, Achim D. (WE 12)
    Kunec, Dusan (WE 5)
    Trimpert, Jakob (WE 5)
    Quelle
    Molecular therapy : the journal of the American Society of Gene Therapy
    Bandzählung: 31
    Heftzählung: 8
    Seiten: 2391 – 2407
    ISSN: 1525-0016
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.sciencedirect.com/science/article/pii/S1525001623002605
    DOI: 10.1016/j.ymthe.2023.05.004
    Pubmed: 37263272
    Kontakt
    Institut für Tierpathologie

    Robert-von-Ostertag-Str. 15
    14163 Berlin
    +49 30 838 62450
    pathologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Live attenuated vaccines (LAVs) administered via the mucosal route may offer better control of the COVID-19 pandemic than non-replicating vaccines injected intramuscularly. Conceptionally, LAVs have several advantages, including presentation of the entire antigenic repertoire of the virus, and the induction of strong mucosal immunity. Thus, immunity induced by LAV could offer superior protection against future surges of COVID-19 cases caused by emerging SARS-CoV-2 variants. However, LAVs carry the risk of unintentional transmission. To address this issue, we investigated whether transmission of a SARS-CoV-2 LAV candidate can be blocked by removing the furin cleavage site (FCS) from the spike protein. The level of protection and immunity induced by the attenuated virus with the intact FCS was virtually identical to the one induced by the attenuated virus lacking the FCS. Most importantly, removal of the FCS completely abolished horizontal transmission of vaccine virus between cohoused hamsters. Furthermore, the vaccine was safe in immunosuppressed animals and showed no tendency to recombine in vitro or in vivo with a SARS-CoV-2 field strain. These results indicate that removal of the FCS from SARS-CoV-2 LAV is a promising strategy to increase vaccine safety and prevent vaccine transmission without compromising vaccine efficacy.