zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset (2022)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Wilm, Frauke
    Fragoso, Marco (WE 12)
    Marzahl, Christian
    Qiu, Jingna
    Puget, Chloé (WE 12)
    Diehl, Laura (WE 12)
    Bertram, Christof A.
    Klopfleisch, Robert (WE 12)
    Maier, Andreas
    Breininger, Katharina
    Aubreville, Marc
    Quelle
    Scientific data
    Bandzählung: 9
    Seiten: Artikel 588
    ISSN: 2052-4463
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s41597-022-01692-w
    DOI: 10.1038/s41597-022-01692-w
    Pubmed: 36167846
    Kontakt
    Institut für Tierpathologie

    Robert-von-Ostertag-Str. 15
    14163 Berlin
    +49 30 838 62450
    pathologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms
    require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.