zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    FeMn with phases of a degradable Ag alloy for residue-free and adapted bioresorbability (2022)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Krüger, Jan Tobias
    Hoyer, Kay-Peter
    Huang, Jingyuan
    Filor, Viviane (WE 14)
    Mateus-Vargas, Rafael Hernan
    Oltmanns, Hilke
    Meißner, Jessica
    Grundmeier, Guido
    Schaper, Mirko
    Quelle
    Journal of Functional Biomaterials
    Bandzählung: 13
    Heftzählung: 4
    Seiten: Artikel 185
    ISSN: 2079-4983
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.mdpi.com/2079-4983/13/4/185
    DOI: 10.3390/jfb13040185
    Kontakt
    Institut für Pharmakologie und Toxikologie

    Koserstr. 20
    14195 Berlin
    +49 30 838 53221
    pharmakologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished.