zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    A pulmonologist's guide to perform and analyse cross-species single lung cell transcriptomics (2022)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Pennitz, Peter
    Kirsten, Holger
    Friedrich, Vincent D.
    Wyler, Emanuel
    Goekeri, Cengiz
    Obermayer, Benedikt
    Heinz, Gitta A.
    Mashreghi, Mir-Farzin
    Büttner, Maren
    Trimpert, Jakob (WE 5)
    Landthaler, Markus
    Suttorp, Norbert
    Hocke, Andreas C.
    Hippenstiel, Stefan
    Tönnies, Mario
    Scholz, Markus
    Kuebler, Wolfgang M.
    Witzenrath, Martin
    Hoenzke, Katja
    Nouailles, Geraldine
    Quelle
    European respiratory review
    Bandzählung: 31
    Heftzählung: 165
    Seiten: Artikel 220056
    ISSN: 1600-0617
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://err.ersjournals.com/content/31/165/220056
    DOI: 10.1183/16000617.0056-2022
    Pubmed: 35896273
    Kontakt
    Institut für Virologie

    Robert-von-Ostertag-Str. 7-13
    14163 Berlin
    +49 30 838 51833
    virologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Single-cell ribonucleic acid sequencing is becoming widely employed to study biological processes at a novel resolution depth. The ability to analyse transcriptomes of multiple heterogeneous cell types in parallel is especially valuable for cell-focused lung research where a variety of resident and recruited cells are essential for maintaining organ functionality. We compared the single-cell transcriptomes from publicly available and unpublished datasets of the lungs in six different species: human (Homo sapiens), African green monkey (Chlorocebus sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat (Rattus norvegicus) and mouse (Mus musculus) by employing RNA velocity and intercellular communication based on ligand-receptor co-expression, among other techniques. Specifically, we demonstrated a workflow for interspecies data integration, applied a single unified gene nomenclature, performed cell-specific clustering and identified marker genes for each species. Overall, integrative approaches combining newly sequenced as well as publicly available datasets could help identify species-specific transcriptomic signatures in both healthy and diseased lung tissue and select appropriate models for future respiratory research.