zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA (2022)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Hennig, Thomas
    Prusty, Archana B.
    Kaufer, Benedikt B. (WE 5)
    Whisnant, Adam W.
    Lodha, Manivel
    Enders, Antje
    Thomas, Julius
    Kasimir, Francesca
    Grothey, Arnhild
    Klein, Teresa
    Herb, Stefanie
    Jürges, Christopher
    Sauer, Markus
    Fischer, Utz
    Rudel, Thomas
    Meister, Gunter
    Erhard, Florian
    Dölken, Lars
    Prusty, Bhupesh K.
    Quelle
    Nature : the international journal of science
    Bandzählung: 605
    Seiten: 539 – 544
    ISSN: 0028-0836
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s41586-022-04667-4
    DOI: 10.1038/s41586-022-04667-4
    Pubmed: 35508655
    Kontakt
    Institut für Virologie

    Robert-von-Ostertag-Str. 7-13
    14163 Berlin
    +49 30 838 51833
    virologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.