zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Mild adverse events of Sputnik V vaccine extracted from Russian language telegram posts via BERT deep learning model (2021)

    Art
    Vortrag
    Autoren
    Semenov, Alexander
    Jarynowski, Andrzej (WE 16)
    Kaminski, Mikołaj
    Belik, Vitaly (WE 16)
    Kongress
    2021 Informs Annual Meeting
    online, 24. – 27.10.2021
    Quelle
    Informs annual meeting 2021: Anaheim, CA : October 24-27, 2021 — The Institute for Operations Research and the Management Sciences (Hrsg.)
    — S. Session VTD53
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.abstractsonline.com/pp8/?utm_campaign=INFORMS%20eNews&utm_medium=email&_hsmi=154433787&_hsenc=p2ANqtz-9g52i1K8dm49Afz9sReuYNsKjUaOCfCDoj-0oWOCzeJTJ1IXO1Vq5l9t7LTtd8_OjYon_UQGcNCac6LzZuSq7Fpjru7UwZF-S9jffGNwsnn30Vj4E&utm_content=154433787&utm_source=hs_email#!/10390/presentation/7884)
    Kontakt
    Institut für Veterinär-Epidemiologie und Biometrie

    Königsweg 67
    14163 Berlin
    +49 30 838 56034
    epi@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Anti-COVID-19 vaccines effectively preventing severe outcomes are the most promising remedy for the current COVID-19 global health crisis. For many vaccines extensive fact sheets on possible adverse reactions are publicly available, which is hardly the case for Sputnik V (Gam-COVID-Vac) vaccine. We used social media data to fill this gap. To this end we investigated the discourse in a Telegram group with more than 10,000 posts devoted to Sputnik V mild adverse events. We utilized multi-label classification of messages by pre-trained BERT deep neural language model for Russian language, and tuned on the Telegram data to calculate frequencies of mild adverse events. Moreover, we perform stratification of results according to sex, age and for the first and second vaccination dose separately. We also compare the results with published data on other anti-Covid vaccines.