zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals (2021)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Gassen, Nils C.
    Papies, Jan
    Bajaj, Thomas
    Emanuel, Jackson
    Dethloff, Frederik
    Chua, Robert Lorenz
    Trimpert, Jakob (WE 5)
    Heinemann, Nicolas
    Niemeyer, Christine
    Weege, Friderike
    Hönzke, Katja
    Aschman, Tom
    Heinz, Daniel E.
    Weckmann, Katja
    Ebert, Tim
    Zellner, Andreas
    Lennarz, Martina
    Wyler, Emanuel
    Schroeder, Simon
    Richter, Anja
    Niemeyer, Daniela
    Hoffmann, Karen
    Meyer, Thomas F.
    Heppner, Frank L.
    Corman, Victor M.
    Landthaler, Markus
    Hocke, Andreas C.
    Morkel, Markus
    Osterrieder, Nikolaus (WE 5)
    Conrad, Christian
    Eils, Roland
    Radbruch, Helena
    Giavalisco, Patrick
    Drosten, Christian
    Müller, Marcel A.
    Quelle
    Nature Communications
    Bandzählung: 12
    Heftzählung: 1
    Seiten: Article number: 3818
    ISSN: 2041-1723
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s41467-021-24007-w
    DOI: 10.1038/s41467-021-24007-w
    Pubmed: 34155207
    Kontakt
    Institut für Virologie

    Robert-von-Ostertag-Str. 7-13
    14163 Berlin
    +49 30 838 51833
    virologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.