jump to content

Fachbereich Veterinärmedizin


Service-Navigation

    Publication Database

    Estimating and abstracting the 3D structure of feline bones using neural networks on X-ray (2D) images (2020)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Čavojská, Jana
    Petrasch, Julian
    Mattern, Denny
    Lehmann, Nicolas Jens
    Voisard, Agnès
    Böttcher, Peter (WE 20)
    Quelle
    Communications biology
    Bandzählung: 3
    Heftzählung: 1
    Seiten: Article number: 337
    ISSN: 2399-3642
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s42003-020-1057-3
    DOI: 10.1038/s42003-020-1057-3
    Pubmed: 32606393
    Kontakt
    Klein- und Heimtierklinik

    Oertzenweg 19 b
    14163 Berlin
    +49 30 838 62422
    kleintierklinik@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Computing 3D bone models using traditional Computed Tomography (CT) requires a high-radiation dose, cost and time. We present a fully automated, domain-agnostic method for estimating the 3D structure of a bone from a pair of 2D X-ray images. Our triplet loss-trained neural network extracts a 128-dimensional embedding of the 2D X-ray images. A classifier then finds the most closely matching 3D bone shape from a predefined set of shapes. Our predictions have an average root mean square (RMS) distance of 1.08 mm between the predicted and true shapes, making our approach more accurate than the average achieved by eight other examined 3D bone reconstruction approaches. Each embedding extracted from a 2D bone image is optimized to uniquely identify the 3D bone CT from which the 2D image originated and can serve as a kind of fingerprint of each bone; possible applications include faster, image content-based bone database searches for forensic purposes.