zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Deep learning-based quantification of pulmonary hemosiderophages in cytology slides (2020)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Marzahl, Christian
    Aubreville, Marc
    Bertram, Christof A. (WE 12)
    Stayt, Jason
    Jasensky, Anne-Katherine
    Bartenschlager, Florian (WE 12)
    Fragoso-Garcia, Marco (WE 12)
    Barton, Ann K. (WE 17)
    Elsemann, Svenja
    Jabari, Samir
    Krauth, Jens
    Madhu, Prathmesh
    Voigt, Jörn
    Hill, Jenny
    Klopfleisch, Robert (WE 12)
    Maier, Andreas
    Quelle
    Scientific reports
    Bandzählung: 10
    Heftzählung: 1
    Seiten: Article number: 9795
    ISSN: 2045-2322
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s41598-020-65958-2
    DOI: 10.1038/s41598-020-65958-2
    Pubmed: 32747665
    Kontakt
    Pferdeklinik

    Oertzenweg 19 b
    14163 Berlin
    +49 30 838 62299 / 62300
    pferdeklinik@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss' kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI.