How big is big enough?
a large-scale histological dataset of mitotic figures (2020)
Art
Poster
Autoren
Bertram, Christof A. (WE 12)
Aubreville, Marc
Marzahl, Christian
Maier, Andreas
Klopfleisch, Robert (WE 12)
Kongress
BVM Workshop
Berlin, 15. – 17.03.2020
Quelle
Bildverarbeitung für die Medizin 2020 : Algorithmen – Systeme – Anwendungen. Proceedings des Workshops vom 15. bis 17. März 2020 in Berlin — Tolxdorff, Thomas, Deserno, Thomas M., Handels, Heinz, Maier, Andreas, Maier-Hein, Klaus H., Palm, Christoph (Hrsg.)
1. Auflage
Wiesbaden: Springer Vieweg, 2020. Informatik aktuell — S. 293
Robert-von-Ostertag-Str. 15
14163 Berlin
+49 30 838 62450
pathologie@vetmed.fu-berlin.de
Abstract / Zusammenfassung
Quantification of mitotic figures (MF) within the tumor areas of highest mitotic density is the most important prognostic parameter for outcome assessment of many tumor types. However, high intra- and inter-rater variability results from diffculties in individual MF identification and region of interest (ROI) selection due to uneven MF distribution. Deep learning-based algorithms for MF detection and ROI selection are very promising methods to overcome these limitations.