zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    A completely annotated whole slide image dataset of canine breast cancer to aid human breast cancer research (2020)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Aubreville, Marc
    Bertram, Christof A. (WE 12)
    Donovan, Taryn A.
    Marzahl, Christian
    Maier, Andreas
    Klopfleisch, Robert (WE 12)
    Quelle
    Scientific data
    Bandzählung: 7
    Heftzählung: 1
    Seiten: Article number: 417
    ISSN: 2052-4463
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.nature.com/articles/s41597-020-00756-z
    DOI: 10.1038/s41597-020-00756-z
    Pubmed: 33247116
    Kontakt
    Institut für Tierpathologie

    Robert-von-Ostertag-Str. 15
    14163 Berlin
    +49 30 838 62450
    pathologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Canine mammary carcinoma (CMC) has been used as a model to investigate the pathogenesis of human breast cancer and the same grading scheme is commonly used to assess tumor malignancy in both. One key component of this grading scheme is the density of mitotic figures (MF). Current publicly available datasets on human breast cancer only provide annotations for small subsets of whole slide images (WSIs). We present a novel dataset of 21 WSIs of CMC completely annotated for MF. For this, a pathologist screened all WSIs for potential MF and structures with a similar appearance. A second expert blindly assigned labels, and for non-matching labels, a third expert assigned the final labels. Additionally, we used machine learning to identify previously undetected MF. Finally, we performed representation learning and two-dimensional projection to further increase the consistency of the annotations. Our dataset consists of 13,907 MF and 36,379 hard negatives. We achieved a mean F1-score of 0.791 on the test set and of up to 0.696 on a human breast cancer dataset.