zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus (2020)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Henke, Christine
    Töllner, Kathrin
    van Dijk, R. Maarten
    Miljanovic, Nina
    Cordes, Thekla
    Twele, Friederike
    Bröer, Sonja
    Ziesak, Vanessa
    Rohde, Marco
    Hauck, Stefanie M.
    Vogel, Charlotte
    Welzel, Lisa
    Schumann, Tina
    Willmes, Diana M.
    Kurzbach, Anica
    El-Agroudy, Nermeen N.
    Bornstein, Stefan R.
    Schneider, Susanne A.
    Jordan, Jens
    Potschka, Heidrun
    Metallo, Christian M.
    Köhling, Rüdiger
    Birkenfeld, Andreas L.
    Löscher, Wolfgang
    Quelle
    Neurobiology of Disease
    Bandzählung: 143
    Seiten: 105018
    ISSN: 0969-9961
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://www.sciencedirect.com/science/article/pii/S096999612030293X
    DOI: 10.1016/j.nbd.2020.105018
    Pubmed: 32682952
    Kontakt
    Institut für Pharmakologie und Toxikologie

    Koserstr. 20
    14195 Berlin
    +49 30 838 53221
    pharmakologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.