zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    A review of recent research on Theileria parva:
    Implications for the infection and treatment vaccination method for control of East Coast fever (2020)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Bishop, Richard P.
    Odongo, David
    Ahmed, Jabbar (WE 13)
    Mwamuye, Micky (WE 13)
    Fry, Lindsay M.
    Knowles, Donald P.
    Nanteza, Anne
    Lubega, George
    Gwakisa, Paul
    Clausen, Peter-Henning (WE 13)
    Obara, Isaiah (WE 13)
    Forschungsprojekt
    Molecular epidemiology network for promotion and support of delivery of live vaccines against Theileria parva and Theileria annulata infection in Eastern and Northern Africa
    Quelle
    Transboundary and emerging diseases
    Bandzählung: 67
    Heftzählung: S1
    Seiten: 56 – 67
    ISSN: 1865-1674
    Sprache
    Englisch
    Verweise
    URL (Volltext): https://onlinelibrary.wiley.com/doi/full/10.1111/tbed.13325
    DOI: 10.1111/tbed.13325
    Pubmed: 32174044
    Kontakt
    Institut für Parasitologie und Tropenveterinärmedizin

    Robert-von-Ostertag-Str. 7-13
    14163 Berlin
    +49 30 838 62310
    parasitologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    The infection and treatment (ITM) live vaccination method for control of Theileria parva infection in cattle is increasingly being adopted, particularly in Maasai pastoralist systems. Several studies indicate positive impacts on human livelihoods. Importantly, the first detailed protocol for live vaccine production at scale has recently been published. However, quality control and delivery issues constrain vaccination sustainability and deployment. There is evidence that the distribution of T. parva is spreading from endemic areas in East Africa, North into Southern Sudan and West into Cameroon, probably as a result of anthropogenic movement of cattle. It has also recently been demonstrated that in Kenya, T. parva derived from cape buffalo can 'breakthrough' the immunity induced by ITM. However, in Tanzania, breakthrough has not been reported in areas where cattle co-graze with buffalo. It has been confirmed that buffalo in northern Uganda national parks are not infected with T. parva and R. appendiculatus appears to be absent, raising issues regarding vector distribution. Recently, there have been multiple field population genetic studies using variable number tandem repeat (VNTR) sequences and sequencing of antigen genes encoding targets of CD8+ T-cell responses. The VNTR markers generally reveal high levels of diversity. The antigen gene sequences present within the trivalent Muguga cocktail are relatively conserved among cattle transmissible T. parva populations. By contrast, greater genetic diversity is present in antigen genes from T. parva of buffalo origin. There is also evidence from several studies for transmission of components of stocks present within the Muguga cocktail, into field ticks and cattle following induction of a carrier state by immunization. In the short term, this may increase live vaccine effectiveness, through a more homogeneous challenge, but the long-term consequences are unknown.