zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo (2018)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Zhang, Kaiyi
    Riba, Ambre
    Nietschke, Monika
    Torow, Natalia
    Repnik, Urska
    Pütz, Andreas
    Fulde, Marcus (WE 7)
    Dupont, Aline
    Hensel, Michael
    Hornef, Mathias
    Quelle
    PLoS pathogens
    Bandzählung: 14
    Heftzählung: 3
    Seiten: e1006925
    ISSN: 1553-7374
    Sprache
    Englisch
    Verweise
    DOI: 10.1371/journal.ppat.1006925
    Pubmed: 29522566
    Kontakt
    Institut für Mikrobiologie und Tierseuchen

    Robert-von-Ostertag-Str. 7-13
    14163 Berlin
    +49 30 838 51843 / 66949
    mikrobiologie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Effector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella. Here, we took advantage of our novel neonatal mouse model and analyzed various bacterial mutants and reporter strains as well as gene deficient mice. Our results demonstrate the critical but redundant role of SopE2 and SipA for enterocyte invasion, prerequisite for transcriptional stimulation and mucosal translocation in vivo. In contrast, the generation of a replicative intraepithelial endosomal compartment required the cooperative action of SipA and SopE2 or SipA and SopB but was independent of SopA or host MyD88 signaling. Intraepithelial growth had no critical influence on systemic spread. Our results define the role of SPI1-T3SS effector molecules during enterocyte invasion and intraepithelial proliferation in vivo providing novel insight in the early course of Salmonella infection.