zum Inhalt springen

Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Functional endothelial cells isolated from rhesus monkey embryonic stem cells (2004)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Kaufman, DS
    Lewis, RL
    Hanson, ET
    Auerbach, R
    Plendl, J (WE 1)
    Thomson, JA
    Quelle
    Blood
    Bandzählung: 103
    Seiten: 1325 – 1333
    ISSN: 0006-4971
    Kontakt
    Institut für Veterinär-Anatomie

    Koserstr. 20
    14195 Berlin
    +49 30 838 75784
    anatomie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    We have used rhesus monkey embryonic stem (ES) cells to study endothelial cell development. Rhesus ES cells (R366.4 cell line) exposed to medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF) assumed a relatively uniform endothelial cell morphology and could be propagated and expanded with a consistent phenotype and normal karyotype. When placed in Matrigel, these rhesus ES cell–derived endothelial cells (RESDECs) formed capillary-like structures characteristic of endothelial cells. Immunohistochemical and flow cytometric analysis of RESDECs showed that they take up acetylated low-density lipoprotein (LDL), express CD146, von Willebrand factor, and the integrin v3, and bind the lectin ulex europaeus agglutinin-1. These cells also express the VEGF receptor Flk-1 and secrete VEGF. When introduced in a Matrigel plug implanted subcutaneously in mice, RESDECs formed intact vessels and recruited new endothelial cell growth. In vivo function was demonstrated by coinjection of RESDECs with murine tumor cells subcutaneously into immunocompromised adult mice. RESDECs injected alone did not form measurable tumors. Tumor cells grew more rapidly and had increased vascularization when coinjected with the RESDECs. Immunohistochemical staining demonstrated that the RESDECs participated in forming the tumor neovasculature. RESDECs provide a novel means to examine the mechanisms of endothelial cell development, and may open up new therapeutic strategies.