Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    Lung protection in cardio-pulmonary bypass (2017)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Salameh, A
    Greimann, W
    Vollroth, M
    Dhein, S
    Bahramsoltani, M (WE 1)
    Dahnert, I
    Quelle
    Journal of physiology and pharmacology; 68(1) — S. 99–116
    ISSN: 0867-5910
    Sprache
    Englisch
    Verweise
    Pubmed: 28456774
    Kontakt
    Institut für Veterinär-Anatomie

    Koserstr. 20
    14195 Berlin
    +49 30 838 53555
    anatomie@vetmed.fu-berlin.de

    Abstract / Zusammenfassung

    Since the invention of the heart-lung machine paediatric cardiac surgery developed rapidly. For correction of complex cardiac malformations the application of a cardio-pulmonary bypass (CPB) has become indispensable but possible negative effects of this technique should not be neglected. Especially, both bypassed organs i.e. heart and lung are not perfused during the procedure and therefore are threatened by ischemia and reperfusion injury. Additionally, CPB was developed with a non-pulsatile flow but there are clinical observations that pulsatile flow might be superior with improved patient outcomes. Thus, the aim of our study was to evaluate the effect of CPB on lung structure and to assess whether different flow modalities (pulsatile vs. non-pulsatile flow) or application of the antibiotic minocycline might be advantageous. Thirty five piglets of four weeks age were examined and divided into five experimental groups: control (no CPB) without or with minocycline, CPB (non-pulsatile flow) without or with minocycline and CPB with pulsatile flow. CPB was performed for 90 min followed by a 120 min reperfusion and recovery phase. Thereafter, adenosine triphosphate-content of lung biopsies and histology was carried out. We found that CPB was associated with a significant thickening of alveolar wall accompanied by an infiltration of neutrophil leucocytes. Moreover, markers for hypoxia, apoptosis, nitrosative stress, inflammation and DNA damage were significantly elevated after CPB. These cellular damages could be partially inhibited by minocycline or pulsatile flow. Both, minocycline and pulsatile flow attenuate lung damage after CPB.