Fachbereich Veterinärmedizin



    YjjQ Represses Transcription of flhDC and Additional Loci in Escherichia coli (2015)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Wiebe, Helene
    Gürlebeck, Doreen
    Groß, Jana
    Dreck, Katrin
    Pannen, Derk
    Ewers, Christa
    Wieler, Lothar H (WE 7)
    Schnetz, Karin
    Journal of bacteriology : JB; 197(16) — S. 2713–2720
    ISSN: 0021-9193
    DOI: 10.1128/JB.00263-15
    Pubmed: 26078445
    Institut für Mikrobiologie und Tierseuchen

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35
    14163 Berlin
    +49 30 838 51840 / 51843

    Abstract / Zusammenfassung

    The presumptive transcriptional regulator YjjQ has been identified as being virulence associated in avian pathogenic Escherichia coli (APEC). In this work, we characterize YjjQ as transcriptional repressor of the flhDC operon, encoding the master regulator of flagellar synthesis, and of additional loci. The latter include gfc (capsule 4 synthesis), ompC (outer membrane porin C), yfiRNB (regulated c-di-GMP synthesis), and loci of poorly defined function (ybhL and ymiA-yciX). We identify the YjjQ DNA-binding sites at the flhDC and gfc promoters and characterize a DNA-binding sequence motif present at all promoters found to be repressed by YjjQ. At the flhDC promoter, the YjjQ DNA-binding site overlaps the RcsA-RcsB DNA-binding site. RcsA-RcsB likewise represses the flhDC promoter, but the repression by YjjQ and that by RcsA-RcsB are independent of each other. These data suggest that YjjQ is an additional regulator involved in the complex control of flhDC at the level of transcription initiation. Furthermore, we show that YjjQ represses motility of the E. coli K-12 laboratory strain and of uropathogenic E. coli (UPEC) strains CFT073 and 536. Regulation of flhDC, yfiRNB, and additional loci by YjjQ may be features relevant for pathogenicity.

    Escherichia coli is a commensal and pathogenic bacterium causing intra- and extraintestinal infections in humans and farm animals. The pathogenicity of E. coli strains is determined by their particular genome content, which includes essential and associated virulence factors that control the cellular physiology in the host environment. However, the gene pools of commensal and pathogenic E. coli are not clearly differentiated, and the function of virulence-associated loci needs to be characterized. In this study, we characterize the function of yjjQ, encoding a transcription regulator that was identified as being virulence associated in avian pathogenic E. coli (APEC). We characterize YjjQ as transcriptional repressor of flagellar motility and of additional loci related to pathogenicity.