Fachbereich Veterinärmedizin


Service-Navigation

    Publikationsdatenbank

    HEPACAM1 and 2 are Differentially Regulated in Canine Mammary Adenomas and Carcinomas and its Lymph Node Metastases (2010)

    Art
    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Autoren
    Klopfleisch, Robert
    Klose, Patricia
    da Costa, Afonso
    Brunnberg, Leo
    Gruber, Achim D
    Quelle
    BMC veterinary research; 6(Art. 15) — S. 6 S.
    ISSN: 1746-6148
    Sprache
    Englisch
    Verweise
    DOI: 10.1186/1746-6148-6-15
    Pubmed: 20226097
    Kontakt
    Institut für Tierpathologie

    Robert-von-Ostertag-Str. 15
    Gebäude 12
    14163 Berlin
    +49 30 838 62450

    Abstract / Zusammenfassung

    Cell adhesion is an important regulator of cell growth and motility. Recently the hepatocyte cell adhesion molecules 1 and 2 (HEPACAM1 and 2), members of the immunoglobulin family of adhesion genes, have been identified. HEPACAM1 is involved in negative cell cycle regulation via p53, p21 and p27 signalling but also mediates increased human breast cancer cell spread. The role and expression pattern of HEPACAM2 has not been analyzed so far. In the present study we quantified gene expression levels of HEPACAM1 and 2 to evaluate their possible role during the carcinogenesis of canine mammary tumours.

    Adenomas displayed increased HEPACAM1 and 2 mRNA expression levels and decreased HEPACAM1 protein expression levels when compared to normal gland, carcinomas and lymph node metastases. In contrast, metastatic carcinomas, intravascular tumour cells and lymph node metastases had HEPACAM 1 protein and mRNA expression levels similar to normal gland but decreased HEPACAM2 mRNA expression when compared to normal gland of the same dog.

    HEPACAM1 and 2 seem to be important for cell-cell adhesion of normal and neoplastic canine mammary cells. The loss of HEPACAM1 protein expression in adenomas but not in carcinomas questions its role as a tumour suppressor at late stages of malignant transformation and indicates that it might rather be involved in physiologic mammary cell adhesion and canine mammary tumour metastasis. Furthermore, it can be speculated, whether HEPACAM2 plays a different role in malignancy and metastasis of canine mammary tumours since its transcriptional levels are different in carcinomas and their lymph node metastases when compared to HEPACAM1.