Fachbereich Veterinärmedizin



    A controlled study on gastrointestinal nematodes from two Swedish cattle farms showing field evidence of ivermectin resistance (2014)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Areskog, Marlene
    Sollenberg, Sofia
    Engström, Annie
    von Samson-Himmelstjerna, Georg (WE 13)
    Höglund, Johan
    Parasites & Vectors; 7 — S. 13
    ISSN: 1756-3305
    URL (Volltext): http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000021366
    DOI: 10.1186/1756-3305-7-13
    Pubmed: 24401545
    Institut für Parasitologie und Tropenveterinärmedizin

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35, 22, 23
    14163 Berlin
    Tel.+49 30 838 62310 Fax.+49 30 838 62323

    Abstract / Zusammenfassung

    Anthelmintic resistance (AR) is an increasing problem for the ruminant livestock sector worldwide. However, the extent of the problem is still relatively unknown, especially for parasitic nematodes of cattle. The effect of ivermectin (IVM) (Ivomec inj.®, Merial) was investigated in Swedish isolates of gastrointestinal nematode (GIN) populations showing signs of AR in the field to further characterise the AR status by a range of in vivo and in vitro methods.

    Three groups, each of 11 calves, were infected with an equal mixture of third stage larvae (L3) of Cooperia oncophora and Ostertagia ostertagi. Group A was inoculated with an IVM-susceptible laboratory isolate and groups B and C with isolates originating from 'resistant' cattle farms. Faecal egg counts (FEC) were monitored from 0 to 45 days post infection (d.p.i.), and L3 were harvested continuously for larval migration inhibition testing (LMIT) and species-specific PCR (ITS2). At 31 d.p.i., one calf from each group was necropsied and adult worms were recovered pre-treatment. At 35 d.p.i., calves from all groups were injected with IVM at the recommended dose (0.2 mg/kg bodyweight). At 45 d.p.i., another two animals from each group were sacrificed and established gastrointestinal worms were collected and counted.

    A few animals in all three groups were still excreting eggs (50-150 per g faeces) 10 days post IVM injection. However, there was no significant difference in the FEC reductions in groups A (95%; 95% CI 81-99), B (98%; 92-100) and C (99%; 97-100) between 35 and 44 d.p.i. Furthermore, LMIT showed no significant difference between the three groups. Approximately 100 adult O. ostertagi were found in the abomasum of one calf (group B), whereas low to moderate numbers (400-12 200) of C. oncophora remained in the small intestine of the calves in all three groups at 45 d.p.i. PCR on L3 harvested from faecal samples up to 10 days post treatment showed a ratio of 100% C. oncophora in the calves inoculated with isolates A and B, whereas C also had 8% O. ostertagi.

    Overall, this experiment showed that the animals were successfully treated according to the Faecal egg count reduction test (FECRT) standard (≥ 95% reduction). However, several adult worms of the dose-limiting species C. oncophora demonstrably survived the IVM treatment.