Fachbereich Veterinärmedizin



    The detection of anthelmintic resistance in nematodes of veterinary importance (2006)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Coles, G C
    Jackson, F
    Pomroy, W E
    Prichard, R K
    von Samson-Himmelstjerna, G (WE 13)
    Silvestre, A
    Taylor, M A
    Vercruysse, J
    Veterinary Parasitology; 136(3/4) — S. 167–185
    ISSN: 0304-4017
    Pubmed: 16427201
    Institut für Parasitologie und Tropenveterinärmedizin

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35, 22, 23
    14163 Berlin
    +49 30 838 62310

    Abstract / Zusammenfassung

    Before revised World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines on the detection of anthelmintic resistance can be produced, validation of modified and new methods is required in laboratories in different parts of the world. There is a great need for improved methods of detection of anthelmintic resistance particularly for the detection of macrocyclic lactone resistance and for the detection of resistant nematodes in cattle. Therefore, revised and new methods are provided here for the detection of anthelmintic resistance in nematodes of ruminants, horses and pigs as a basis for discussion and with the purpose that they are evaluated internationally to establish whether they could in the future be recommended by the WAAVP. The interpretation of the faecal egg count reduction test has been modified and suggestions given on its use with persistent anthelmintics and continuous release devices. An egg hatch test for benzimidazole (BZ) resistance is described. A microagar larval development test for the detection of benzimidazole and levamisole resistance provides third stage larvae for the identification of resistant worms. The sensitivity of these two tests can be increased by using discriminating doses rather than LD(50) values. Details are given of a PCR based test for the analysis of benzimidazole resistance in strongyles of sheep and goats, horses and cattle. Although promising for ruminant trichostrongyles, quantitative determination of gene frequency using real time PCR requires further development before PCR tests will be used in the field. Apart from faecal egg count reduction tests there are currently no satisfactory tests for macrocylic lactone resistance despite the great importance of this subject. Except for treatment and slaughter trials there are no validated tests for fasciolicide resistance or for the detection of resistance in cestodes.