Fachbereich Veterinärmedizin



    Exploration of global gene expression changes during the estrous cycle in equine endometrium (2012)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Gebhardt, Simone
    Merkl, Maximiliane
    Herbach, Nadja
    Wanke, Rüdiger
    Handler, Johannes (WE 17)
    Bauersachs, Stefan
    Biology of reproduction; 87(6) — S. 136
    ISSN: 0006-3363
    DOI: 10.1095/biolreprod.112.103226
    Pubmed: 23077167
    Klinik für Pferde, allgemeine Chirurgie und Radiologie

    Oertzenweg 19 b
    14163 Berlin
    +49 30 838 62299

    Abstract / Zusammenfassung

    The equine endometrium exhibits characteristic morphological and functional changes during the estrous cycle controlled by the interplay of progesterone and estradiol. A microarray analysis of endometrial tissue samples derived from five time points of the estrous cycle (Day [D] 0, D3, D8, D12, and D16) was performed to study the dynamics of equine endometrial gene expression. Statistical analysis revealed 4996 genes differentially expressed during the estrous cycle. Clustering of similar expression profiles was performed to find groups of coregulated genes. This revealed eight major profiles: highest mRNA concentrations on D0, from D0 to D3, on D3, from D3 to D8, on D8, from D8 to D12, from D12 to D16, and on D16. Bioinformatics analysis revealed distinct molecular functions and biological processes for the individual expression profiles characterizing the different phases of the estrous cycle (e.g., extracellular matrix and inflammatory response during the estrus phase, cell division and cell cycle during early luteal phase, and endoplasmic reticulum, protein transport, and lipid metabolism in the luteal phase). A comparison to dynamic gene expression changes in bovine endometrium identified common and species-specific gene regulations in cyclic endometrium. Analysis of expression changes during the estrous cycle for genes previously found to be differentially expressed on D12 of pregnancy provided new evidence for possible regulation of these genes. This study provides new insights regarding global changes of equine endometrial gene expression as molecular reflections of physiological changes in the cyclic equine endometrium with regard to the crucial role of this tissue for successful reproduction.