Fachbereich Veterinärmedizin



    A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation (2013)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Daniłowicz-Luebert, Emilia
    Steinfelder, Svenja
    Kühl, Anja A
    Drozdenko, Gennadiy
    Lucius, Richard
    Worm, Margitta
    Hamelmann, Eckard
    Hartmann, Susanne (WE 6)
    International Journal for Parasitology; 43(3-4) — S. 201–210
    ISSN: 0020-7519
    DOI: 10.1016/j.ijpara.2012.10.014
    Pubmed: 23174104
    Institut für Immunologie

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35
    14163 Berlin
    +49 30 838 51834

    Abstract / Zusammenfassung

    Helminth parasites modulate the immune system by complex mechanisms to ensure persistence in the host. Released immunomodulatory parasite components lead to a beneficial environment for the parasite by targeting different host cells and in parallel to a modulation of unrelated inflammatory responses in the host, such as allergy. The aim of this study was to investigate the effect of the potent helminth immunomodulator, filarial cystatin, in a murine model of airway inflammation and hyperreactivity induced by a clinically relevant aeroallergen (timothy grass (Phleum pratense) pollen) and on the function of peripheral blood mononuclear cells (PBMCs) from timothy grass pollen allergic patients. BALB/c mice were systemically sensitised with a recombinant major allergen of timothy grass pollen (rPhl p 5b) and then challenged with timothy grass pollen extract (GPE) via the airways. Filarial cystatin was applied i.p. during the sensitisation phase. Airway hyperresponsiveness to methacholine challenges, inflammation of airways, inflammatory cell recruitment, cytokine production and lung histopathology were investigated. In a translational approach, PBMCs from allergic subjects and healthy controls were treated in vitro with cystatin prior to stimulation with GPE. Administration of filarial cystatin suppressed rPhl p 5b-induced allergen-specific Th2-responses and airway inflammation, inhibited local recruitment of eosinophils, reduced levels of allergen-specific IgE and down-regulated IL-5 and IL-13 in the bronchoalveolar lavage (BAL). Ex vivo restimulation with cystatin of spleen cells from cystatin-treated mice induced the production of IL-10, while cystatin inhibited allergen-specific IL-5 and IL-13 levels. Human PBMCs from timothy grass pollen allergic patients displayed a shift towards a Th1 response after treatment with cystatin. These results show that filarial cystatin ameliorates allergic inflammation and disease in a clinically relevant model of allergy. This data indicate that filarial cystatin has a modulatory effect on grass pollen-specific responses warranting further investigation of potential preventive and therapeutic options in the treatment of allergies.