Fachbereich Veterinärmedizin



    Marek's disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission (2012)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Jarosinski, Keith W
    Osterrieder, Nikolaus (WE 5)
    Journal of virology; 86(15) — S. 7896–7906
    ISSN: 0022-538x
    DOI: 10.1128/JVI.00908-12
    Pubmed: 22593168
    Institut für Virologie

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35
    14163 Berlin
    +49 30 838 51833

    Abstract / Zusammenfassung

    Marek's disease (MD) is a devastating oncogenic viral disease of chickens caused by Gallid herpesvirus 2, or MD virus (MDV). MDV glycoprotein C (gC) is encoded by the alphaherpesvirus UL44 homolog and is essential for the horizontal transmission of MDV (K. W. Jarosinski and N. Osterrieder, J. Virol. 84:7911-7916, 2010). Alphaherpesvirus gC proteins are type 1 membrane proteins and are generally anchored in cellular membranes and the virion envelope by a short transmembrane domain. However, the majority of MDV gC is secreted in vitro, although secondary-structure analyses predict a carboxy-terminal transmembrane domain. In this report, two alternative mRNA splice variants were identified by reverse transcription (RT)-PCR analyses, and the encoded proteins were predicted to specify premature stop codons that would lead to gC proteins that lack the transmembrane domain. Based on the size of the intron removed for each UL44 (gC) transcript, they were termed gC104 and gC145. Recombinant MDV viruses were generated in which only full-length viral gC (vgCfull), gC104 (vgC104), or gC145 (vgC145) was expressed. Predictably, gCfull was expressed predominantly as a membrane-associated protein, while both gC104 and gC145 were secreted, suggesting that the dominant gC variants expressed in vitro are the spliced variants. In experimentally infected chickens, the expression of each of the gC variants individually did not alter replication or disease induction. However, horizontal transmission was reduced compared to that of wild-type or revertant viruses when the expression of only a single gC was allowed, indicating that all three forms of gC are required for the efficient transmission of MDV in chickens.