Fachbereich Veterinärmedizin



    Clostridium perfringens toxin types from freshwater fishes in one water reservoir of Shandong Province of China, determined by PCR (2008)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Cai, Y.
    Gao, J.
    Wang, X.
    Chai, T.
    Zhang, X.
    Duan, H.
    Jiang, S.
    Zucker, B. A.
    Schlenker, G.
    Deutsche tierärztliche Wochenschrift : DTW; 115(8) — S. 292–296
    ISSN: 0341-6593
    Pubmed: 18717056
    Institut für Tier- und Umwelthygiene

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35
    14169 Berlin
    Tel.+49 30 8385 1845 Fax.+49 30 83845 1863

    Abstract / Zusammenfassung

    Four hundred and twenty intestinal content samples (not including intestinal tissues) of freshwater fishes (60 silver carps, 100 carps, 100 crucian carps, 60 catfishes and 100 zaieuws) caught from one water reservoir were examined bacteriologically for the occurrence of C. perfringens. Isolates were examined by polymerase chain reaction (PCR) for genes encoding the four lethal toxins (alpha, beta, epsilon and iota) for classification into toxin types and for genes encoding enterotoxin and the novel beta2 toxin for further subclassification. C. perfringens could be isolated in 75 intestinal contents samples (17.9%) from freshwater fish including: 13 silver carps, 2 carps, 12 crucian carps, 40 zaieuws, and 8 catfishes. In 75 isolates, 58 strains (77.3%) were C. perfringens toxin type C (alpha and beta toxin positive), 13 strains (17.3%) were toxin type A (alpha toxin positive) and 4 strains (5.3%) were toxin type B (alpha, beta and epsilon toxin positive). In addition, the gene encoding for beta2 toxin was found in 47 strains (62.7%) of all the isolates, seven from type A, two from type B, and 38 from type C. The gene encoding for enterotoxin was not found in any isolate. These amplified toxin gene fragment were cloned and sequenced and compared with reference strains, the identity varied from 98.15% to 99.29%. This is the first report of C. perfringens alpha, beta, epsilon, beta2 toxins in freshwater fish and of beta, epsilon toxins in fish in general, and is the first discovery that the beta2 toxin could be detected in strains of type B. The origin of this bacterium and its importance to human food poisoning in freshwater fish is discussed.