Fachbereich Veterinärmedizin



    No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area (2011)

    Zeitschriftenartikel / wissenschaftlicher Beitrag
    Wieler, Lothar H
    Semmler, Torsten
    Eichhorn, Inga
    Antao, Esther M
    Kinnemann, Bianca
    Geue, Lutz
    Karch, Helge
    Guenther, Sebastian
    Bethe, Astrid
    Gut pathogens; 3(1) — S. 17
    ISSN: 1757-4749
    URL (Volltext): http://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000017270
    DOI: 10.1186/1757-4749-3-17
    Pubmed: 22051440
    Institut für Mikrobiologie und Tierseuchen

    Robert-von-Ostertag-Str. 7-13
    Gebäude 35
    14163 Berlin
    Tel.+49 30 83 8-518 40/518 43 Fax.+49 30 838 45 18 51

    Abstract / Zusammenfassung

    Ruminants, in particular bovines, are the primary reservoir of Shiga toxin-producing E. coli (STEC), but whole genome analyses of the current German ESBL-producing O104:H4 outbreak strain of sequence type (ST) 678 showed this strain to be highly similar to enteroaggregative E. coli (EAEC). Strains of the EAEC pathotype are basically adapted to the human host. To clarify whether in contrast to this paradigm, the O104:H4 outbreak strain and/or EAEC may also be able to colonize ruminants, we screened a total of 2.000 colonies from faecal samples of 100 cattle from 34 different farms - all located in the HUS outbreak region of Northern Germany - for genes associated with the O104:H4 HUS outbreak strain (stx2, terD, rfbO104, fliCH4), STEC (stx1, stx2, escV), EAEC (pAA, aggR, astA), and ESBL-production (blaCTX-M, blaTEM, blaSHV).

    The faecal samples contained neither the HUS outbreak strain nor any EAEC. As the current outbreak strain belongs to ST678 and displays an en-teroaggregative and ESBL-producing phenotype, we additionally screened selected strains for ST678 as well as the aggregative adhesion pattern in HEp-2 cells. However, we were unable to find any strains belonging to ST678 or showing an aggregative adhesion pattern. A high percentage of animals (28%) shed STEC, corroborating previous knowl-edge and thereby proving the validity of our study. One of the STEC also harboured the LEE pathogenicity island. In addition, eleven animals shed ESBL-producing E. coli.

    While we are aware of the limitations of our survey, our data support the theory, that, in contrast to other Shiga-toxin producing E. coli, cattle are not the reservoir for the O104:H4 outbreak strain or other EAEC, but that the outbreak strain seems to be adapted to humans or might have yet another reservoir, raising new questions about the epidemiology of STEC O104:H4.